Sparse Nonlinear Regression: Parameter Estimation and Asymptotic Inference

14 Nov 2015  ·  Zhuoran Yang, Zhaoran Wang, Han Liu, Yonina C. Eldar, Tong Zhang ·

We study parameter estimation and asymptotic inference for sparse nonlinear regression. More specifically, we assume the data are given by $y = f( x^\top \beta^* ) + \epsilon$, where $f$ is nonlinear. To recover $\beta^*$, we propose an $\ell_1$-regularized least-squares estimator. Unlike classical linear regression, the corresponding optimization problem is nonconvex because of the nonlinearity of $f$. In spite of the nonconvexity, we prove that under mild conditions, every stationary point of the objective enjoys an optimal statistical rate of convergence. In addition, we provide an efficient algorithm that provably converges to a stationary point. We also access the uncertainty of the obtained estimator. Specifically, based on any stationary point of the objective, we construct valid hypothesis tests and confidence intervals for the low dimensional components of the high-dimensional parameter $\beta^*$. Detailed numerical results are provided to back up our theory.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here