Sparse Principal Component Analysis via Variable Projection

Sparse principal component analysis (SPCA) has emerged as a powerful technique for modern data analysis, providing improved interpretation of low-rank structures by identifying localized spatial structures in the data and disambiguating between distinct time scales. We demonstrate a robust and scalable SPCA algorithm by formulating it as a value-function optimization problem. This viewpoint leads to a flexible and computationally efficient algorithm. Further, we can leverage randomized methods from linear algebra to extend the approach to the large-scale (big data) setting. Our proposed innovation also allows for a robust SPCA formulation which obtains meaningful sparse principal components in spite of grossly corrupted input data. The proposed algorithms are demonstrated using both synthetic and real world data, and show exceptional computational efficiency and diagnostic performance.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here