Sparse-promoting Full Waveform Inversion based on Online Orthonormal Dictionary Learning

16 Nov 2015Lingchen ZhuEntao LiuJames H. McClellan

Full waveform inversion (FWI) delivers high-resolution images of the subsurface by minimizing iteratively the misfit between the recorded and calculated seismic data. It has been attacked successfully with the Gauss-Newton method and sparsity promoting regularization based on fixed multiscale transforms that permit significant subsampling of the seismic data when the model perturbation at each FWI data-fitting iteration can be represented with sparse coefficients... (read more)

PDF Abstract


No code implementations yet. Submit your code now

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper

🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet