Sparse recovery via Orthogonal Least-Squares under presence of Noise

8 Aug 2016  ·  Abolfazl Hashemi, Haris Vikalo ·

We consider the Orthogonal Least-Squares (OLS) algorithm for the recovery of a $m$-dimensional $k$-sparse signal from a low number of noisy linear measurements. The Exact Recovery Condition (ERC) in bounded noisy scenario is established for OLS under certain condition on nonzero elements of the signal. The new result also improves the existing guarantees for Orthogonal Matching Pursuit (OMP) algorithm. In addition, This framework is employed to provide probabilistic guarantees for the case that the coefficient matrix is drawn at random according to Gaussian or Bernoulli distribution where we exploit some concentration properties. It is shown that under certain conditions, OLS recovers the true support in $k$ iterations with high probability. This in turn demonstrates that ${\cal O}\left(k\log m\right)$ measurements is sufficient for exact recovery of sparse signals via OLS.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here