Spatial-Spectral Boosting Analysis for Stroke Patients' Motor Imagery EEG in Rehabilitation Training

23 Oct 2013  ·  Hao Zhang, Liqing Zhang ·

Current studies about motor imagery based rehabilitation training systems for stroke subjects lack an appropriate analytic method, which can achieve a considerable classification accuracy, at the same time detects gradual changes of imagery patterns during rehabilitation process and disinters potential mechanisms about motor function recovery. In this study, we propose an adaptive boosting algorithm based on the cortex plasticity and spectral band shifts. This approach models the usually predetermined spatial-spectral configurations in EEG study into variable preconditions, and introduces a new heuristic of stochastic gradient boost for training base learners under these preconditions. We compare our proposed algorithm with commonly used methods on datasets collected from 2 months' clinical experiments. The simulation results demonstrate the effectiveness of the method in detecting the variations of stroke patients' EEG patterns. By chronologically reorganizing the weight parameters of the learned additive model, we verify the spatial compensatory mechanism on impaired cortex and detect the changes of accentuation bands in spectral domain, which may contribute important prior knowledge for rehabilitation practice.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here