Spatially regularized reconstruction of fibre orientation distributions in the presence of isotropic diffusion

23 Jan 2014  ·  Q. Zhou, O. Michailovich, Y. Rathi ·

The connectivity and structural integrity of the white matter of the brain is nowadays known to be implicated into a wide range of brain-related disorders. However, it was not before the advent of diffusion Magnetic Resonance Imaging (dMRI) that researches have been able to examine the properties of white matter in vivo. Presently, among a range of various methods of dMRI, high angular resolution diffusion imaging (HARDI) is known to excel in its ability to provide reliable information about the local orientations of neural fasciculi (aka fibre tracts). Moreover, as opposed to the more traditional diffusion tensor imaging (DTI), HARDI is capable of distinguishing the orientations of multiple fibres passing through a given spatial voxel. Unfortunately, the ability of HARDI to discriminate between neural fibres that cross each other at acute angles is always limited, which is the main reason behind the development of numerous post-processing tools, aiming at the improvement of the directional resolution of HARDI. Among such tools is spherical deconvolution (SD). Due to its ill-posed nature, however, SD standardly relies on a number of a priori assumptions which are to render its results unique and stable. In this paper, we propose a different approach to the problem of SD in HARDI, which accounts for the spatial continuity of neural fibres as well as the presence of isotropic diffusion. Subsequently, we demonstrate how the proposed solution can be used to successfully overcome the effect of partial voluming, while preserving the spatial coherency of cerebral diffusion at moderate-to-severe noise levels. In a series of both in silico and in vivo experiments, the performance of the proposed method is compared with that of several available alternatives, with the comparative results clearly supporting the viability and usefulness of our approach.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here