Spatio-Temporal Failure Propagation in Cyber-Physical Power Systems

5 Feb 2022  ·  Osman Boyaci, M. Rasoul Narimani, Katherine Davis, Erchin Serpedin ·

Cascading failure in power systems is triggered by a small perturbation that leads to a sequence of failures spread through the system. The interconnection between different components in a power system causes failures to easily propagate across the system. The situation gets worse by considering the interconnection between cyber and physical layers in power systems. A plethora of work has studied the cascading failure in power systems to calculate its impact on the system. Understanding how failures propagate into the system in time and space can help the system operator to take preventive actions and upgrade the system accordingly. Due to the nonlinearity of the power flow equation as well as the engineering constraints in the power system, it is essential to understand the spatio-temporal failure propagation in cyber-physical power systems (CPPS). This paper proposes an asynchronous algorithm for investigating failure propagation in CPPS. The physics of the power system is addressed by the full AC power flow equations. Various practical constraints including load shedding, load-generation balance, and island operation are considered to address practical constraints in power system operation. The propagation of various random initial attacks of different sizes is analyzed and visualized to elaborate on the applicability of the proposed approach. Our findings shed light on the cascading failure evolution in CPPS.

PDF Abstract
No code implementations yet. Submit your code now



  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here