Spatio-Temporal Hilbert Maps for Continuous Occupancy Representation in Dynamic Environments

We consider the problem of building continuous occupancy representations in dynamic environments for robotics applications. The problem has hardly been discussed previously due to the complexity of patterns in urban environments, which have both spatial and temporal dependencies. We address the problem as learning a kernel classifier on an efficient feature space. The key novelty of our approach is the incorporation of variations in the time domain into the spatial domain. We propose a method to propagate motion uncertainty into the kernel using a hierarchical model. The main benefit of this approach is that it can directly predict the occupancy state of the map in the future from past observations, being a valuable tool for robot trajectory planning under uncertainty. Our approach preserves the main computational benefits of static Hilbert maps — using stochastic gradient descent for fast optimization of model parameters and incremental updates as new data are captured. Experiments conducted in road intersections of an urban environment demonstrated that spatio-temporal Hilbert maps can accurately model changes in the map while outperforming other techniques on various aspects.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here