Speaker diarisation using 2D self-attentive combination of embeddings

8 Feb 2019Guangzhi SunChao ZhangPhil Woodland

Speaker diarisation systems often cluster audio segments using speaker embeddings such as i-vectors and d-vectors. Since different types of embeddings are often complementary, this paper proposes a generic framework to improve performance by combining them into a single embedding, referred to as a c-vector... (read more)

PDF Abstract

Code


No code implementations yet. Submit your code now

Tasks


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet