Spectral Embedding of Graph Networks

30 Sep 2020  ·  Shay Deutsch, Stefano Soatto ·

We introduce an unsupervised graph embedding that trades off local node similarity and connectivity, and global structure. The embedding is based on a generalized graph Laplacian, whose eigenvectors compactly capture both network structure and neighborhood proximity in a single representation. The key idea is to transform the given graph into one whose weights measure the centrality of an edge by the fraction of the number of shortest paths that pass through that edge, and employ its spectral proprieties in the representation. Testing the resulting graph network representation shows significant improvement over the sate of the art in data analysis tasks including social networks and material science. We also test our method on node classification from the human-SARS CoV-2 protein-protein interactome.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here