Spectral Learning of Mixture of Hidden Markov Models

In this paper, we propose a learning approach for the Mixture of Hidden Markov Models (MHMM) based on the Method of Moments (MoM). Computational advantages of MoM make MHMM learning amenable for large data sets. It is not possible to directly learn an MHMM with existing learning approaches, mainly due to a permutation ambiguity in the estimation process. We show that it is possible to resolve this ambiguity using the spectral properties of a global transition matrix even in the presence of estimation noise. We demonstrate the validity of our approach on synthetic and real data.

PDF Abstract
No code implementations yet. Submit your code now



  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here