Spectral methods for neural characterization using generalized quadratic models

We describe a set of fast, tractable methods for characterizing neural responses to high-dimensional sensory stimuli using a model we refer to as the generalized quadratic model (GQM). The GQM consists of a low-rank quadratic form followed by a point nonlinearity and exponential-family noise... (read more)

PDF Abstract
No code implementations yet. Submit your code now


Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper

🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet