Spectral modification for recognition of children’s speech undermismatched conditions

In this paper, we propose spectral modification by sharpening formants and by reducing the spectral tilt to recognize children’s speech by automatic speech recognition (ASR) systems developed using adult speech. In this type of mismatched condition, the ASR performance is degraded due to the acoustic and linguistic mismatch in the attributes between children and adult speakers. The proposed method is used to improve the speech intelligibility to enhance the children’s speech recognition using an acoustic model trained on adult speech. In the experiments, WSJCAM0 and PFSTAR are used as databases for adults’ and children’s speech, respectively. The proposed technique gives a significant improvement in the context of the DNN-HMM-based ASR. Furthermore, we validate the robustness of the technique by showing that it performs well also in mismatched noise conditions.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here