Spectral neighbor joining for reconstruction of latent tree models

28 Feb 2020  ·  Ariel Jaffe, Noah Amsel, Yariv Aizenbud, Boaz Nadler, Joseph T. Chang, Yuval Kluger ·

A common assumption in multiple scientific applications is that the distribution of observed data can be modeled by a latent tree graphical model. An important example is phylogenetics, where the tree models the evolutionary lineages of a set of observed organisms. Given a set of independent realizations of the random variables at the leaves of the tree, a key challenge is to infer the underlying tree topology. In this work we develop Spectral Neighbor Joining (SNJ), a novel method to recover the structure of latent tree graphical models. Given a matrix that contains a measure of similarity between all pairs of observed variables, SNJ computes a spectral measure of cohesion between groups of observed variables. We prove that SNJ is consistent, and derive a sufficient condition for correct tree recovery from an estimated similarity matrix. Combining this condition with a concentration of measure result on the similarity matrix, we bound the number of samples required to recover the tree with high probability. We illustrate via extensive simulations that in comparison to several other reconstruction methods, SNJ requires fewer samples to accurately recover trees with a large number of leaves or long edges.

PDF Abstract


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here