Spectral State Compression of Markov Processes

8 Feb 2018  ·  Anru Zhang, Mengdi Wang ·

Model reduction of Markov processes is a basic problem in modeling state-transition systems. Motivated by the state aggregation approach rooted in control theory, we study the statistical state compression of a discrete-state Markov chain from empirical trajectories... Through the lens of spectral decomposition, we study the rank and features of Markov processes, as well as properties like representability, aggregability, and lumpability. We develop spectral methods for estimating the transition matrix of a low-rank Markov model, estimating the leading subspace spanned by Markov features, and recovering latent structures like state aggregation and lumpable partition of the state space. We prove statistical upper bounds for the estimation errors and nearly matching minimax lower bounds. Numerical studies are performed on synthetic data and a dataset of New York City taxi trips. read more

PDF Abstract
No code implementations yet. Submit your code now



  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here