Speech earthquakes: scaling and universality in human voice

5 Aug 2014  ·  Jordi Luque, Bartolo Luque, Lucas Lacasa ·

Speech is a distinctive complex feature of human capabilities. In order to understand the physics underlying speech production, in this work we empirically analyse the statistics of large human speech datasets ranging several languages. We first show that during speech the energy is unevenly released and power-law distributed, reporting a universal robust Gutenberg-Richter-like law in speech. We further show that such earthquakes in speech show temporal correlations, as the interevent statistics are again power-law distributed. Since this feature takes place in the intra-phoneme range, we conjecture that the responsible for this complex phenomenon is not cognitive, but it resides on the physiological speech production mechanism. Moreover, we show that these waiting time distributions are scale invariant under a renormalisation group transformation, suggesting that the process of speech generation is indeed operating close to a critical point. These results are put in contrast with current paradigms in speech processing, which point towards low dimensional deterministic chaos as the origin of nonlinear traits in speech fluctuations. As these latter fluctuations are indeed the aspects that humanize synthetic speech, these findings may have an impact in future speech synthesis technologies. Results are robust and independent of the communication language or the number of speakers, pointing towards an universal pattern and yet another hint of complexity in human speech.

PDF Abstract
No code implementations yet. Submit your code now


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here