Spherical Convolutional Neural Networks: Stability to Perturbations in SO(3)

12 Oct 2020  ·  Zhan Gao, Fernando Gama, Alejandro Ribeiro ·

Spherical convolutional neural networks (Spherical CNNs) learn nonlinear representations from 3D data by exploiting the data structure and have shown promising performance in shape analysis, object classification, and planning among others. This paper investigates the properties that Spherical CNNs exhibit as they pertain to the rotational structure inherent in spherical signals. We build upon the rotation equivariance of spherical convolutions to show that Spherical CNNs are stable to general structure perturbations. In particular, we model arbitrary structure perturbations as diffeomorphism perturbations, and define the rotation distance that measures how far from rotations these perturbations are. We prove that the output change of a Spherical CNN induced by the diffeomorphism perturbation is bounded proportionally by the perturbation size under the rotation distance. This stability property coupled with the rotation equivariance provide theoretical guarantees that underpin the practical observations that Spherical CNNs exploit the rotational structure, maintain performance under structure perturbations that are close to rotations, and offer good generalization and faster learning.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here