Spherical Random Features for Polynomial Kernels

NeurIPS 2015 Jeffrey PenningtonFelix Xinnan X. YuSanjiv Kumar

Compact explicit feature maps provide a practical framework to scale kernel methods to large-scale learning, but deriving such maps for many types of kernels remains a challenging open problem. Among the commonly used kernels for nonlinear classification are polynomial kernels, for which low approximation error has thus far necessitated explicit feature maps of large dimensionality, especially for higher-order polynomials... (read more)

PDF Abstract


No code implementations yet. Submit your code now


Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper

🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet