Paper

Spherical Rotation Dimension Reduction with Geometric Loss Functions

Modern datasets often exhibit high dimensionality, yet the data reside in low-dimensional manifolds that can reveal underlying geometric structures critical for data analysis. A prime example of such a dataset is a collection of cell cycle measurements, where the inherently cyclical nature of the process can be represented as a circle or sphere. Motivated by the need to analyze these types of datasets, we propose a nonlinear dimension reduction method, Spherical Rotation Component Analysis (SRCA), that incorporates geometric information to better approximate low-dimensional manifolds. SRCA is a versatile method designed to work in both high-dimensional and small sample size settings. By employing spheres or ellipsoids, SRCA provides a low-rank spherical representation of the data with general theoretic guarantees, effectively retaining the geometric structure of the dataset during dimensionality reduction. A comprehensive simulation study, along with a successful application to human cell cycle data, further highlights the advantages of SRCA compared to state-of-the-art alternatives, demonstrating its superior performance in approximating the manifold while preserving inherent geometric structures.

Results in Papers With Code
(↓ scroll down to see all results)