Spike timing-dependent plasticity as dynamic filter

When stimulated with complex action potential sequences synapses exhibit spike timing-dependent plasticity (STDP) with attenuated and enhanced pre- and postsynaptic contributions to long-term synaptic modifications. In order to investigate the functional consequences of these contribution dynamics (CD) we propose a minimal model formulated in terms of differential equations. We find that our model reproduces a wide range of experimental results with a small number of biophysically interpretable parameters. The model allows to investigate the susceptibility of STDP to arbitrary time courses of pre- and postsynaptic activities, i.e. its nonlinear filter properties. We demonstrate this for the simple example of small periodic modulations of pre- and postsynaptic firing rates for which our model can be solved. It predicts synaptic strengthening for synchronous rate modulations. For low baseline rates modifications are dominant in the theta frequency range, a result which underlines the well known relevance of theta activities in hippocampus and cortex for learning. We also find emphasis of low baseline spike rates and suppression for high baseline rates. The latter suggests a mechanism of network activity regulation inherent in STDP. Furthermore, our novel formulation provides a general framework for investigating the joint dynamics of neuronal activity and the CD of STDP in both spike-based as well as rate-based neuronal network models.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here