SPIN: An Empirical Evaluation on Sharing Parameters of Isotropic Networks

Recent isotropic networks, such as ConvMixer and vision transformers, have found significant success across visual recognition tasks, matching or outperforming non-isotropic convolutional neural networks (CNNs). Isotropic architectures are particularly well-suited to cross-layer weight sharing, an effective neural network compression technique. In this paper, we perform an empirical evaluation on methods for sharing parameters in isotropic networks (SPIN). We present a framework to formalize major weight sharing design decisions and perform a comprehensive empirical evaluation of this design space. Guided by our experimental results, we propose a weight sharing strategy to generate a family of models with better overall efficiency, in terms of FLOPs and parameters versus accuracy, compared to traditional scaling methods alone, for example compressing ConvMixer by 1.9x while improving accuracy on ImageNet. Finally, we perform a qualitative study to further understand the behavior of weight sharing in isotropic architectures. The code is available at https://github.com/apple/ml-spin.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here