Spin-glass dynamics in the presence of a magnetic field: exploration of microscopic properties

4 Jan 2021  ·  I. Paga, Q. Zhai, M. Baity-Jesi, E. Calore, A. Cruz, L. A. Fernandez, J. M. Gil-Narvion, I. Gonzalez-Adalid Pemartin, A Gordillo-Guerrero, D. Iñiguez, A. Maiorano, E. Marinari, V. Martin-Mayor, J. Moreno-Gordo, A. Muñoz-Sudupe, D. Navarro, R. L. Orbach, G. Parisi, S. Perez-Gaviro, F. Ricci-Tersenghi, J. J. Ruiz-Lorenzo, S. F. Schifano, D. L. Schlagel, B. Seoane, A. Tarancon, R. Tripiccione, D. Yllanes ·

The synergy between experiment, theory, and simulations enables a microscopic analysis of spin-glass dynamics in a magnetic field in the vicinity of and below the spin-glass transition temperature $T_\mathrm{g}$. The spin-glass correlation length, $\xi(t,t_\mathrm{w};T)$, is analysed both in experiments and in simulations in terms of the waiting time $t_\mathrm{w}$ after the spin glass has been cooled down to a stabilised measuring temperature $T<T_\mathrm{g}$ and of the time $t$ after the magnetic field is changed. This correlation length is extracted experimentally for a CuMn 6 at. % single crystal, as well as for simulations on the Janus II special-purpose supercomputer, the latter with time and length scales comparable to experiment. The non-linear magnetic susceptibility is reported from experiment and simulations, using $\xi(t,t_\mathrm{w};T)$ as the scaling variable. Previous experiments are reanalysed, and disagreements about the nature of the Zeeman energy are resolved. The growth of the spin-glass magnetisation in zero-field magnetisation experiments, $M_\mathrm{ZFC}(t,t_\mathrm{w};T)$, is measured from simulations, verifying the scaling relationships in the dynamical or non-equilibrium regime. Our preliminary search for the de Almeida-Thouless line in $D=3$ is discussed.

PDF Abstract
No code implementations yet. Submit your code now

Categories


Disordered Systems and Neural Networks