We propose a novel deep neural network that is both lightweight and effectively structured for model parallelization. Our network, which we name as SplitNet, automatically learns to split the network weights into either a set or a hierarchy of multiple groups that use disjoint sets of features, by learning both the class-to-group and feature-to-group assignment matrices along with the network weights... (read more)
PDF AbstractMETHOD | TYPE | |
---|---|---|
🤖 No Methods Found | Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet |