Spotlight: Optimizing Device Placement for Training Deep Neural Networks

Training deep neural networks (DNNs) requires an increasing amount of computation resources, and it becomes typical to use a mixture of GPU and CPU devices. Due to the heterogeneity of these devices, a recent challenge is how each operation in a neural network can be optimally placed on these devices, so that the training process can take the shortest amount of time possible... (read more)

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet