$\sqrt{n}$-Regret for Learning in Markov Decision Processes with Function Approximation and Low Bellman Rank

5 Sep 2019  ·  Kefan Dong, Jian Peng, Yining Wang, Yuan Zhou ·

In this paper, we consider the problem of online learning of Markov decision processes (MDPs) with very large state spaces. Under the assumptions of realizable function approximation and low Bellman ranks, we develop an online learning algorithm that learns the optimal value function while at the same time achieving very low cumulative regret during the learning process. Our learning algorithm, Adaptive Value-function Elimination (AVE), is inspired by the policy elimination algorithm proposed in (Jiang et al., 2017), known as OLIVE. One of our key technical contributions in AVE is to formulate the elimination steps in OLIVE as contextual bandit problems. This technique enables us to apply the active elimination and expert weighting methods from (Dudik et al., 2011), instead of the random action exploration scheme used in the original OLIVE algorithm, for more efficient exploration and better control of the regret incurred in each policy elimination step. To the best of our knowledge, this is the first $\sqrt{n}$-regret result for reinforcement learning in stochastic MDPs with general value function approximation.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here