SSN: Learning Sparse Switchable Normalization via SparsestMax

Normalization methods improve both optimization and generalization of ConvNets. To further boost performance, the recently-proposed switchable normalization (SN) provides a new perspective for deep learning: it learns to select different normalizers for different convolution layers of a ConvNet. However, SN uses softmax function to learn importance ratios to combine normalizers, leading to redundant computations compared to a single normalizer. This work addresses this issue by presenting Sparse Switchable Normalization (SSN) where the importance ratios are constrained to be sparse. Unlike $\ell_1$ and $\ell_0$ constraints that impose difficulties in optimization, we turn this constrained optimization problem into feed-forward computation by proposing SparsestMax, which is a sparse version of softmax. SSN has several appealing properties. (1) It inherits all benefits from SN such as applicability in various tasks and robustness to a wide range of batch sizes. (2) It is guaranteed to select only one normalizer for each normalization layer, avoiding redundant computations. (3) SSN can be transferred to various tasks in an end-to-end manner. Extensive experiments show that SSN outperforms its counterparts on various challenging benchmarks such as ImageNet, Cityscapes, ADE20K, and Kinetics.

PDF Abstract CVPR 2019 PDF CVPR 2019 Abstract

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods