Stability and Optimization Error of Stochastic Gradient Descent for Pairwise Learning

25 Apr 2019Wei ShenZhenhuan YangYiming YingXiaoming Yuan

In this paper we study the stability and its trade-off with optimization error for stochastic gradient descent (SGD) algorithms in the pairwise learning setting. Pairwise learning refers to a learning task which involves a loss function depending on pairs of instances among which notable examples are bipartite ranking, metric learning, area under ROC (AUC) maximization and minimum error entropy (MEE) principle... (read more)

PDF Abstract

Code


No code implementations yet. Submit your code now

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper