Stability Enhanced Large-Margin Classifier Selection

20 Jan 2017Will Wei SunGuang ChengYufeng Liu

Stability is an important aspect of a classification procedure because unstable predictions can potentially reduce users' trust in a classification system and also harm the reproducibility of scientific conclusions. The major goal of our work is to introduce a novel concept of classification instability, i.e., decision boundary instability (DBI), and incorporate it with the generalization error (GE) as a standard for selecting the most accurate and stable classifier... (read more)

PDF Abstract

Code


No code implementations yet. Submit your code now

Tasks


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.