Stability of the Stochastic Gradient Method for an Approximated Large Scale Kernel Machine

21 Apr 2018 Aven Samareh Mahshid Salemi Parizi

In this paper we measured the stability of stochastic gradient method (SGM) for learning an approximated Fourier primal support vector machine. The stability of an algorithm is considered by measuring the generalization error in terms of the absolute difference between the test and the training error... (read more)

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet