Stacked Sentence-Document Classifier Approach for Improving Native Language Identification

WS 2017  ·  Andrea Cimino, Felice Dell{'}Orletta ·

In this paper, we describe the approach of the ItaliaNLP Lab team to native language identification and discuss the results we submitted as participants to the essay track of NLI Shared Task 2017. We introduce for the first time a 2-stacked sentence-document architecture for native language identification that is able to exploit both local sentence information and a wide set of general-purpose features qualifying the lexical and grammatical structure of the whole document. When evaluated on the official test set, our sentence-document stacked architecture obtained the best result among all the participants of the essay track with an F1 score of 0.8818.

PDF Abstract


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here