Standardizing Interestingness Measures for Association Rules

16 Aug 2013  ·  Mateen Shaikh, Paul D. McNicholas, M. Luiza Antonie, T. Brendan Murphy ·

Interestingness measures provide information that can be used to prune or select association rules. A given value of an interestingness measure is often interpreted relative to the overall range of the values that the interestingness measure can take. However, properties of individual association rules restrict the values an interestingness measure can achieve. An interesting measure can be standardized to take this into account, but this has only been done for one interestingness measure to date, i.e., the lift. Standardization provides greater insight than the raw value and may even alter researchers' perception of the data. We derive standardized analogues of three interestingness measures and use real and simulated data to compare them to their raw versions, each other, and the standardized lift.

PDF Abstract
No code implementations yet. Submit your code now



Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here