Star-Convexity in Non-Negative Matrix Factorization

25 Sep 2019  ·  Johan Bjorck, Carla Gomes, Kilian Weinberger ·

Non-negative matrix factorization (NMF) is a highly celebrated algorithm for matrix decomposition that guarantees strictly non-negative factors. The underlying optimization problem is computationally intractable, yet in practice gradient descent based solvers often find good solutions. This gap between computational hardness and practical success mirrors recent observations in deep learning, where it has been the focus of extensive discussion and analysis. In this paper we revisit the NMF optimization problem and analyze its loss landscape in non-worst-case settings. It has recently been observed that gradients in deep networks tend to point towards the final minimizer throughout the optimization. We show that a similar property holds (with high probability) for NMF, provably in a non-worst case model with a planted solution, and empirically across an extensive suite of real-world NMF problems. Our analysis predicts that this property becomes more likely with growing number of parameters, and experiments suggest that a similar trend might also hold for deep neural networks --- turning increasing data sets and models into a blessing from an optimization perspective.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here