StatAssist & GradBoost: A Study on Optimal INT8 Quantization-aware Training from Scratch

17 Jun 2020Taehoon KimYoungjoon YooJihoon Yang

This paper studies the scratch training of quantization-aware training (QAT), which has been applied to the lossless conversion of lower-bit, especially for INT8 quantization. Due to its training instability, QAT have required a full-precision (FP) pre-trained weight for fine-tuning and the performance is bound to the original FP model with floating-point computations... (read more)

PDF Abstract

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper

🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet