State Abstractions for Lifelong Reinforcement Learning

In lifelong reinforcement learning, agents must effectively transfer knowledge across tasks while simultaneously addressing exploration, credit assignment, and generalization. State abstraction can help overcome these hurdles by compressing the representation used by an agent, thereby reducing the computational and statistical burdens of learning... (read more)

PDF Abstract
No code implementations yet. Submit your code now



  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper

🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet