Statistical and Computational Trade-Offs in Kernel K-Means

NeurIPS 2018  ·  Daniele Calandriello, Lorenzo Rosasco ·

We investigate the efficiency of k-means in terms of both statistical and computational requirements. More precisely, we study a Nystr\"om approach to kernel k-means. We analyze the statistical properties of the proposed method and show that it achieves the same accuracy of exact kernel k-means with only a fraction of computations. Indeed, we prove under basic assumptions that sampling $\sqrt{n}$ Nystr\"om landmarks allows to greatly reduce computational costs without incurring in any loss of accuracy. To the best of our knowledge this is the first result of this kind for unsupervised learning.

PDF Abstract NeurIPS 2018 PDF NeurIPS 2018 Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here