Statistical-Computational Tradeoff in Single Index Models

NeurIPS 2019  ·  Lingxiao Wang, Zhuoran Yang, Zhaoran Wang ·

We study the statistical-computational tradeoffs in a high dimensional single index model $Y=f(X^\top\beta^*) +\epsilon$, where $f$ is unknown, $X$ is a Gaussian vector and $\beta^*$ is $s$-sparse with unit norm. When $\cov(Y,X^\top\beta^*)\neq 0$, \cite{plan2016generalized} shows that the direction and support of $\beta^*$ can be recovered using a generalized version of Lasso. In this paper, we investigate the case when this critical assumption fails to hold, where the problem becomes considerably harder. Using the statistical query model to characterize the computational cost of an algorithm, we show that when $\cov(Y,X^\top\beta^*)=0$ and $\cov(Y,(X^\top\beta^*)^2)>0$, no computationally tractable algorithms can achieve the information-theoretic limit of the minimax risk. This implies that one must pay an extra computational cost for the nonlinearity involved in the model.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here