Statistical-Query Lower Bounds via Functional Gradients

We give the first statistical-query lower bounds for agnostically learning any non-polynomial activation with respect to Gaussian marginals (e.g., ReLU, sigmoid, sign). For the specific problem of ReLU regression (equivalently, agnostically learning a ReLU), we show that any statistical-query algorithm with tolerance $n^{-(1/\epsilon)^b}$ must use at least $2^{n^c} \epsilon$ queries for some constant $b, c > 0$, where $n$ is the dimension and $\epsilon$ is the accuracy parameter. Our results rule out general (as opposed to correlational) SQ learning algorithms, which is unusual for real-valued learning problems. Our techniques involve a gradient boosting procedure for "amplifying" recent lower bounds due to Diakonikolas et al. (COLT 2020) and Goel et al. (ICML 2020) on the SQ dimension of functions computed by two-layer neural networks. The crucial new ingredient is the use of a nonstandard convex functional during the boosting procedure. This also yields a best-possible reduction between two commonly studied models of learning: agnostic learning and probabilistic concepts.

PDF Abstract NeurIPS 2020 PDF NeurIPS 2020 Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods