Stimulative Training of Residual Networks: A Social Psychology Perspective of Loafing

9 Oct 2022  ·  Peng Ye, Shengji Tang, Baopu Li, Tao Chen, Wanli Ouyang ·

Residual networks have shown great success and become indispensable in today's deep models. In this work, we aim to re-investigate the training process of residual networks from a novel social psychology perspective of loafing, and further propose a new training strategy to strengthen the performance of residual networks. As residual networks can be viewed as ensembles of relatively shallow networks (i.e., \textit{unraveled view}) in prior works, we also start from such view and consider that the final performance of a residual network is co-determined by a group of sub-networks. Inspired by the social loafing problem of social psychology, we find that residual networks invariably suffer from similar problem, where sub-networks in a residual network are prone to exert less effort when working as part of the group compared to working alone. We define this previously overlooked problem as \textit{network loafing}. As social loafing will ultimately cause the low individual productivity and the reduced overall performance, network loafing will also hinder the performance of a given residual network and its sub-networks. Referring to the solutions of social psychology, we propose \textit{stimulative training}, which randomly samples a residual sub-network and calculates the KL-divergence loss between the sampled sub-network and the given residual network, to act as extra supervision for sub-networks and make the overall goal consistent. Comprehensive empirical results and theoretical analyses verify that stimulative training can well handle the loafing problem, and improve the performance of a residual network by improving the performance of its sub-networks. The code is available at https://github.com/Sunshine-Ye/NIPS22-ST .

PDF Abstract

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here