STL Robustness Risk over Discrete-Time Stochastic Processes

3 Apr 2021  ·  Lars Lindemann, Nikolai Matni, George J. Pappas ·

We present a framework to interpret signal temporal logic (STL) formulas over discrete-time stochastic processes in terms of the induced risk. Each realization of a stochastic process either satisfies or violates an STL formula. In fact, we can assign a robustness value to each realization that indicates how robustly this realization satisfies an STL formula. We then define the risk of a stochastic process not satisfying an STL formula robustly, referred to as the STL robustness risk. In our definition, we permit general classes of risk measures such as, but not limited to, the conditional value-at-risk. While in general hard to compute, we propose an approximation of the STL robustness risk. This approximation has the desirable property of being an upper bound of the STL robustness risk when the chosen risk measure is monotone, a property satisfied by most risk measures. Motivated by the interest in data-driven approaches, we present a sampling-based method for estimating the approximate STL robustness risk from data for the value-at-risk. While we consider the value-at-risk, we highlight that such sampling-based methods are viable for other risk measures.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here