Stochastic and Adversarial Online Learning without Hyperparameters

NeurIPS 2017 Ashok CutkoskyKwabena A. Boahen

Most online optimization algorithms focus on one of two things: performing well in adversarial settings by adapting to unknown data parameters (such as Lipschitz constants), typically achieving $O(\sqrt{T})$ regret, or performing well in stochastic settings where they can leverage some structure in the losses (such as strong convexity), typically achieving $O(\log(T))$ regret. Algorithms that focus on the former problem hitherto achieved $O(\sqrt{T})$ in the stochastic setting rather than $O(\log(T))$... (read more)

PDF Abstract


No code implementations yet. Submit your code now


Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.