Stochastic Conditional Gradient++

19 Feb 2019  ·  Hamed Hassani, Amin Karbasi, Aryan Mokhtari, Zebang Shen ·

In this paper, we consider the general non-oblivious stochastic optimization where the underlying stochasticity may change during the optimization procedure and depends on the point at which the function is evaluated. We develop Stochastic Frank-Wolfe++ ($\text{SFW}{++} $), an efficient variant of the conditional gradient method for minimizing a smooth non-convex function subject to a convex body constraint. We show that $\text{SFW}{++} $ converges to an $\epsilon$-first order stationary point by using $O(1/\epsilon^3)$ stochastic gradients. Once further structures are present, $\text{SFW}{++}$'s theoretical guarantees, in terms of the convergence rate and quality of its solution, improve. In particular, for minimizing a convex function, $\text{SFW}{++} $ achieves an $\epsilon$-approximate optimum while using $O(1/\epsilon^2)$ stochastic gradients. It is known that this rate is optimal in terms of stochastic gradient evaluations. Similarly, for maximizing a monotone continuous DR-submodular function, a slightly different form of $\text{SFW}{++} $, called Stochastic Continuous Greedy++ ($\text{SCG}{++} $), achieves a tight $[(1-1/e)\text{OPT} -\epsilon]$ solution while using $O(1/\epsilon^2)$ stochastic gradients. Through an information theoretic argument, we also prove that $\text{SCG}{++} $'s convergence rate is optimal. Finally, for maximizing a non-monotone continuous DR-submodular function, we can achieve a $[(1/e)\text{OPT} -\epsilon]$ solution by using $O(1/\epsilon^2)$ stochastic gradients. We should highlight that our results and our novel variance reduction technique trivially extend to the standard and easier oblivious stochastic optimization settings for (non-)covex and continuous submodular settings.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here