Stochastic continuum armed bandit problem of few linear parameters in high dimensions

1 Dec 2013  ·  Hemant Tyagi, Sebastian Stich, Bernd Gärtner ·

We consider a stochastic continuum armed bandit problem where the arms are indexed by the $\ell_2$ ball $B_{d}(1+\nu)$ of radius $1+\nu$ in $\mathbb{R}^d$. The reward functions $r :B_{d}(1+\nu) \rightarrow \mathbb{R}$ are considered to intrinsically depend on $k \ll d$ unknown linear parameters so that $r(\mathbf{x}) = g(\mathbf{A} \mathbf{x})$ where $\mathbf{A}$ is a full rank $k \times d$ matrix. Assuming the mean reward function to be smooth we make use of results from low-rank matrix recovery literature and derive an efficient randomized algorithm which achieves a regret bound of $O(C(k,d) n^{\frac{1+k}{2+k}} (\log n)^{\frac{1}{2+k}})$ with high probability. Here $C(k,d)$ is at most polynomial in $d$ and $k$ and $n$ is the number of rounds or the sampling budget which is assumed to be known beforehand.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here