Stochastic continuum armed bandit problem of few linear parameters in high dimensions

We consider a stochastic continuum armed bandit problem where the arms are indexed by the $\ell_2$ ball $B_{d}(1+\nu)$ of radius $1+\nu$ in $\mathbb{R}^d$. The reward functions $r :B_{d}(1+\nu) \rightarrow \mathbb{R}$ are considered to intrinsically depend on $k \ll d$ unknown linear parameters so that $r(\mathbf{x}) = g(\mathbf{A} \mathbf{x})$ where $\mathbf{A}$ is a full rank $k \times d$ matrix... (read more)

PDF Abstract
No code implementations yet. Submit your code now


Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper

🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet