Stochastic gradient descent algorithms for strongly convex functions at O(1/T) convergence rates

9 May 2013 Shenghuo Zhu

With a weighting scheme proportional to t, a traditional stochastic gradient descent (SGD) algorithm achieves a high probability convergence rate of O({\kappa}/T) for strongly convex functions, instead of O({\kappa} ln(T)/T). We also prove that an accelerated SGD algorithm also achieves a rate of O({\kappa}/T)...

PDF Abstract
No code implementations yet. Submit your code now


Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper