Stochastic Gradient Descent in Hilbert Scales: Smoothness, Preconditioning and Earlier Stopping

18 Jun 2020  ·  Nicole Mücke, Enrico Reiss ·

Stochastic Gradient Descent (SGD) has become the method of choice for solving a broad range of machine learning problems. However, some of its learning properties are still not fully understood. We consider least squares learning in reproducing kernel Hilbert spaces (RKHSs) and extend the classical SGD analysis to a learning setting in Hilbert scales, including Sobolev spaces and Diffusion spaces on compact Riemannian manifolds. We show that even for well-specified models, violation of a traditional benchmark smoothness assumption has a tremendous effect on the learning rate. In addition, we show that for miss-specified models, preconditioning in an appropriate Hilbert scale helps to reduce the number of iterations, i.e. allowing for "earlier stopping".

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods