Stochastic gradient method with accelerated stochastic dynamics

19 Nov 2015Masayuki Ohzeki

In this paper, we propose a novel technique to implement stochastic gradient methods, which are beneficial for learning from large datasets, through accelerated stochastic dynamics. A stochastic gradient method is based on mini-batch learning for reducing the computational cost when the amount of data is large... (read more)

PDF Abstract

Code


No code implementations yet. Submit your code now

Tasks


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet