Stochastic Gradient Riemannian Langevin Dynamics on the Probability Simplex

In this paper we investigate the use of Langevin Monte Carlo methods on the probability simplex and propose a new method, Stochastic gradient Riemannian Langevin dynamics, which is simple to implement and can be applied online. We apply this method to latent Dirichlet allocation in an online setting, and demonstrate that it achieves substantial performance improvements to the state of the art online variational Bayesian methods...

PDF Abstract
No code implementations yet. Submit your code now

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet