Stochastic Multi-armed Bandits in Constant Space

25 Dec 2017  ·  David Liau, Eric Price, Zhao Song, Ger Yang ·

We consider the stochastic bandit problem in the sublinear space setting, where one cannot record the win-loss record for all $K$ arms. We give an algorithm using $O(1)$ words of space with regret \[ \sum_{i=1}^{K}\frac{1}{\Delta_i}\log \frac{\Delta_i}{\Delta}\log T \] where $\Delta_i$ is the gap between the best arm and arm $i$ and $\Delta$ is the gap between the best and the second-best arms. If the rewards are bounded away from $0$ and $1$, this is within an $O(\log 1/\Delta)$ factor of the optimum regret possible without space constraints.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here