Stochastic quasi-Newton with adaptive step lengths for large-scale problems

12 Feb 2018  ·  Adrian Wills, Thomas Schön ·

We provide a numerically robust and fast method capable of exploiting the local geometry when solving large-scale stochastic optimisation problems. Our key innovation is an auxiliary variable construction coupled with an inverse Hessian approximation computed using a receding history of iterates and gradients... It is the Markov chain nature of the classic stochastic gradient algorithm that enables this development. The construction offers a mechanism for stochastic line search adapting the step length. We numerically evaluate and compare against current state-of-the-art with encouraging performance on real-world benchmark problems where the number of observations and unknowns is in the order of millions. read more

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here