Stock-out Prediction in Multi-echelon Networks

20 Sep 2017  ·  Afshin Oroojlooyjadid, Lawrence Snyder, Martin Takáč ·

In multi-echelon inventory systems the performance of a given node is affected by events that occur at many other nodes and in many other time periods. For example, a supply disruption upstream will have an effect on downstream, customer-facing nodes several periods later as the disruption "cascades" through the system... There is very little research on stock-out prediction in single-echelon systems and (to the best of our knowledge) none on multi-echelon systems. However, in real the world, it is clear that there is significant interest in techniques for this sort of stock-out prediction. Therefore, our research aims to fill this gap by using deep neural networks (DNN) to predict stock-outs in multi-echelon supply chains. read more

PDF Abstract
No code implementations yet. Submit your code now



  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here