Stream Clipper: Scalable Submodular Maximization on Stream

1 Jun 2016  ·  Tianyi Zhou, Jeff Bilmes ·

We propose a streaming submodular maximization algorithm "stream clipper" that performs as well as the offline greedy algorithm on document/video summarization in practice. It adds elements from a stream either to a solution set $S$ or to an extra buffer $B$ based on two adaptive thresholds, and improves $S$ by a final greedy step that starts from $S$ adding elements from $B$. During this process, swapping elements out of $S$ can occur if doing so yields improvements. The thresholds adapt based on if current memory utilization exceeds a budget, e.g., it increases the lower threshold, and removes from the buffer $B$ elements below the new lower threshold. We show that, while our approximation factor in the worst case is $1/2$ (like in previous work, and corresponding to the tight bound), we show that there are data-dependent conditions where our bound falls within the range $[1/2, 1-1/e]$. In news and video summarization experiments, the algorithm consistently outperforms other streaming methods, and, while using significantly less computation and memory, performs similarly to the offline greedy algorithm.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here